

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	RethinkORM 0.3.0 documentation

RethinkORM: Introduction

Build status - Master:

[image: https://secure.travis-ci.org/JoshAshby/pyRethinkORM.png?branch=master]
 [http://travis-ci.org/JoshAshby/pyRethinkORM][image: Latest PyPI version]
 [https://crate.io/packages/RethinkORM/][image: Number of PyPI downloads]
 [https://crate.io/packages/RethinkORM/]Build status - Dev:

[image: https://secure.travis-ci.org/JoshAshby/pyRethinkORM.png?branch=dev]
 [http://travis-ci.org/JoshAshby/pyRethinkORM]RethinkORM is a small wrapper class to help make working with documents in
RethinkDB [http://www.rethinkdb.com/] easier, and in a more Pythonic way.

I recently found RethinkDB and was amazed at how easy everything seemed
to be, however one thing that I’ve missed is how the data is just a
Python List or Dict rather than a full wrapper class. So I
figured a good way to learn the general use of the Python RethinkDB
driver was to write a general wrapper class that functioned a bit like
an ORM, providing some easier to work with data and objects.

Unittests are included, and the code should be PEP8 [http://www.python.org/dev/peps/pep-0008/] compliant. The tests are
automatically ran each commit, thanks to travis-ci.org [http://travis-ci.org] and this documentation is kindly hosted and
automatically rebuilt by readthedocs.org [http://readthedocs.org].

Gittip if you like the work I do and would consider a small donation to help
fund me and this project:

A Few Minor Warnings

	I’m only a second year university student, and software
isn’t even my major; I’m working towards an Electrical and Computer
Engineering degree, so not only do I have limited time to keep this
maintained, but I also probably won’t write the best code ever.

	This takes some influence from the Python Django RethinkDB
ORM [https://github.com/dparlevliet/rwrapper] and other ORM systems,
however I haven’t really followed a standard pattern for the interface
for this module. If someone wants to make this more standardized feel
free to, and just submit a pull request, I’ll look it over and probably
will give it the go ahead. For more information see below.

	This is a very early release, things might break, and the code is honestly a
little childish at best. In other words: It’ll hopefully get better, but it
might be a little limited right now.

Installation:

This package is kindly hosted on the Python Package Index making it as easy as
a simple pip command to install.

pip install RethinkORM

Quick Start

There are currently two main modules to this package, Models and Collections.

Models

The core of RethinkORM, models are the main unit of code you’ll probably be use
from this package.

Collections

New in v0.2.0 are collections. These are containers for interacting with sets
of documents. Collections provide an easy way to gather up just the documents
you need, and have them automatically wrapped with the ORM RethinkModel object.

You can read more about collections here.

Versioning

This project will try to follow the semantic versioning guide lines, as laid
out here: SemVer [http://semver.org/], as best as possible.

Contributing

All code for this can be found online at
github [https://github.com/JoshAshby/pyRethinkORM].
If something is broken, or a feature is missing, please submit a pull request
or open an issue. Most things I probably won’t have time to get around to
looking at too deeply, so if you want it fixed, a pull request is the way
to go. Besides that, I’m releasing this under the GPLv3 License as found in the
LICENSE.txt file. Enjoy!

Thanks

Shout outs to these people for contributing to the project:

	scragg0x [https://github.com/scragg0x]

	grieve [https://github.com/grieve]

	justinrsmith [https://github.com/justinrsmith]

Doc Contents

	RethinkModel
	Quick Start:
	Inserting/creating an entry

	Updating an entry

	Deleting an entry

	rethinkModel Module

	RethinkCollection
	Initialize a new Collection

	Join on a table

	Order the Results

	Finally, Fetch the Results

	rethinkCollection Module

	Subpackages
	rethinkORM.tests
	How the tests work (or should, if more are written):

	test_model Module

	rethinkORM.tests
	How the tests work (or should, if more are written):

	test_model Module

	rethinkORM
	rethinkModel Module

	rethinkCollection Module

	Subpackages
	rethinkORM.tests
	How the tests work (or should, if more are written):

	test_model Module

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RethinkORM 0.3.0 documentation

RethinkModel

The model is the core of everything RethinkORM deals with. All data returned
from RethinkDB is eventually wrapped in the model before being returned to the
end user. It provides an pythonic, object style interface for the data,
exposing methods to save and update documents along with creating new ones.

Quick Start:

pip install RethinkORM

First we need to make an object which will represent all of our data in
a specific table, along with getting a connection to RethinkDB started.

import rethinkdb as r
from rethinkORM import RethinkModel

r.connect(db="props").repl()

class tvProps(RethinkModel):
 table = "stargate_props"

For more information on what class properties are available to change, see
rethinkORM

Inserting/creating an entry

dhdProp = tvProps(what="DHD", planet="P3X-439", description="Dial HomeDevice")
dhdProp.id="DHD_P3X_439"
dhdProp.save()

Updating an entry

updatedProp = tvProps("DHD_P3X_439")
updatedProp.description="""Dial Home Device from the planel P3X-439, where an
 Ancient Repository of Knowledge was found, and interfaced with by Colonel
 Jack."""
updatedProp.save()

Deleting an entry

oldProp = tvProps("DHD_P3X_439")
oldProp.delete()

rethinkModel Module

	
class rethinkORM.rethinkModel.RethinkModel(id=False, **kwargs)[source]

	Emulates a python object for the data which is returned from rethinkdb and
the official Python client driver. Raw data from the database is stored in
_data to keep the objects namespace clean. For more information look at how
_get() and _set() function in order to keep the namespace cleaner but still
provide easy access to data.

This object has a __repr__ method which can be used with print or logging
statements. It will give the id and a representation of the internal _data
dict for debugging purposes.

	
table = ''

	The table which this document object will be stored in

	
primaryKey = 'id'

	The current primary key of the table

	
durability = 'soft'

	Can either be Hard or Soft, and is passed to RethinkDB

	
non_atomic = False

	Determins if the transaction can be non atomic or not

	
upsert = True

	Will either update, or create a new object if true and a primary key is
given.

	
__init__(id=False, **kwargs)[source]

	Initializes the main object, if id is in kwargs, then we assume
this is already in the database, and will try to pull its data, if not,
then we assume this is a new entry that will be inserted.

(Optional, only if not using .repl()) conn or connection can also
be passed, which will be used in all the .run() clauses.

	
finishInit()[source]

	A hook called at the end of the main __init__ to allow for
custom inherited classes to customize their init process without having
to redo all of the existing int.
This should accept nothing besides self and nothing should be
returned.

	
__delitem__(item)[source]

	Deletes the given item from the objects _data dict, or if from the
objects namespace, if it does not exist in _data.

	
__contains__(item)[source]

	Allows for the use of syntax similar to:

if "blah" in model:

This only works with the internal _data, and does not include other
properties in the objects namepsace.

	
classmethod new(**kwargs)[source]

	Creates a new instance, filling out the models data with the keyword
arguments passed, so long as those keywords are not in the protected
items array.

	
classmethod create(id=None, **kwargs)[source]

	Similar to new() however this calls save() on the object before
returning it.

	
classmethod find(id)[source]

	Loads an existing entry if one can be found, otherwise an exception is
raised.

	Parameters:	id (Str) – The id of the given entry

	Returns:	cls instance of the given id entry

	
save()[source]

	If an id exists in the database, we assume we’ll update it, and if not
then we’ll insert it. This could be a problem with creating your own
id’s on new objects, however luckily, we keep track of if this is a new
object through a private _new variable, and use that to determine if we
insert or update.

	
delete()[source]

	Deletes the current instance. This assumes that we know what we’re
doing, and have a primary key in our data already. If this is a new
instance, then we’ll let the user know with an Exception

	
__repr__()[source]

	Allows for the representation of the object, for debugging purposes

	
protectedItems[source]

	Provides a cleaner interface to dynamically add items to the models
list of protected functions to not store in the database

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RethinkORM 0.3.0 documentation

RethinkCollection

Collections provide a quick and easy way to interact with many documents of the
same type all at once. They also provide a mechanism for basic joins across one
addition table (due to current limitations of RethinkDB and how it handles
joins). Collections act like Lists of RethinkModel objects, but provide an
interface to order the results, and optionally, eqJoin across one other table,
along with filtering of results.

Initialize a new Collection

Optionally you can also pass a dictionary which will be used as a filter. For
more information on how filters work, please see the RethinkDB docs [http://www.rethinkdb.com/api/#py:selecting_data-filter]

collection = RethinkCollection(gateModel)

Join on a table

collection.joinOn(episodeModel, "episodes")

Order the Results

collection.orderBy("episodes", "ASC")

Finally, Fetch the Results

result = collection.fetch()

Result acts like a List, containing all of the Documents which are part of the
collection, all pre wrapped in a RethinkModel object.

rethinkCollection Module

	
class rethinkORM.rethinkCollection.RethinkCollection(model, filter=None)[source]

	A way to fetch groupings of documents that meet a criteria and have them
in an iterable storage object, with each document represented by
RethinkModel objects

	
__init__(model, filter=None)[source]

	Instantiates a new collection, using the given models table, and
wrapping all documents with the given model.

Filter can be a dictionary or lambda, similar to the filters for the
RethinkDB drivers filters.

	
joinOn(model, onIndex)[source]

	Performs an eqJoin on with the given model. The resulting join will be
accessible through the models name.

	
joinOnAs(model, onIndex, whatAs)[source]

	Like joinOn but allows setting the joined results name to access it
from.

Performs an eqJoin on with the given model. The resulting join will be
accessible through the given name.

	
orderBy(field, direct='desc')[source]

	Allows for the results to be ordered by a specific field. If given,
direction can be set with passing an additional argument in the form
of “asc” or “desc”

	
fetch()[source]

	Fetches the query and then tries to wrap the data in the model, joining
as needed, if applicable.

Subpackages

	rethinkORM.tests
	How the tests work (or should, if more are written):

	test_model Module

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	RethinkORM 0.3.0 documentation

 	rethinkORM

rethinkORM.tests

To get started and make sure this all works, please make sure you have
Python nose [https://github.com/nose-devs/nose] installed.

nosetests rethinkORM -v -s

This will run the all the tests, not capturing stdout and being verbose, in
case anything goes wrong, or if you modify the tests. Please note, tests
are subject to a lot of changes, and this may not always be the same
command.

If you want to also check the
PEP8 [http://www.python.org/dev/peps/pep-0008/]
validity of the code, you can run:

pep8 rethinkORM

or, if you have tissue [https://pypi.python.org/pypi/tissue/0.3]
installed you can run a PEP8 check with the rest of the test suite like so:

nosetests rethinkORM -v -s --with-tissue

How the tests work (or should, if more are written):

There is a setup fixture that creates a database called model and
within that creates a table stargate. Then each test works on
entries which get stored in this database and table. When everything is
done, the teardown fixture is ran to clean up and delete the whole
database model. Each test should be broken down into basic actions,
for example there are currently tests for:

	inserting a new entry

	modifying that entry

	deleting that entry

	inserting an entry where the primary key is None or a null value.

test_model Module

Test suite for the model

	
class rethinkORM.tests.test_model.base[source]

	Bases: object

Base test object to help automate some of the repetitive work of reloading
a document to ensure the model matches the test data. Also takes care of
deleting the document if cleanupAfter is True

	
cleanupAfter = False

	Should the document created by this test be deleted when over?

	
loadCheck = True

	Should the document be reloaded and have all it’s data checked against?

	
whatToLoad = []

	If loadCheck is true, fill this out with strings of the data keys
to check the model against.

	
model = None

	The model being used for this test

	
data = None

	The data being used for this test. Please at least include an ID

	
action()[source]

	Override this with your own function to do whatever you want for the
test

	
load()[source]

	Override this to do a custom load check. This should find the key you
created or modified in action() and check it’s values to ensure
everything was set correctly. By default this loads the model with the
test objects data[“id”] and uses whatToLoad to run checks against
the data and the model.

	
cleanup()[source]

	Override this to set a custom cleanup process. By default this takes
the key that was generated in action() and calls the models
.delete() function.

	
class rethinkORM.tests.test_model.insert_test[source]

	Bases: rethinkORM.tests.test_model.base

Tests the basic ability to make a new model instance, and save it to the
Database

	
model

	alias of gateModel

	
action()[source]

	Creates a new object, and inserts it, using .save()

	
class rethinkORM.tests.test_model.modify_test[source]

	Bases: rethinkORM.tests.test_model.base

Tests the ability to load, modify and save a model correctly

	
model

	alias of gateModel

	
action()[source]

	Next, we get the object again, and this time,
we modify it, and save it.

	
rethinkORM.tests.test_model.insertBadId_test(*arg, **kw)[source]

	Here we test to make sure that if we give a primary key of type None
that we are raising an exception, if we don’t get an exception then
something is wrong since the primary key shouldn’t be allowed to be None

	
rethinkORM.tests.test_model.insertIdAndData_test(*arg, **kw)[source]

	Make sure that the model raises an Exception when a key and data are
provided

	
class rethinkORM.tests.test_model.new_classmethod_test[source]

	Bases: rethinkORM.tests.test_model.base

Tests the new() classmethod of the model

	
model

	alias of gateModel

	
class rethinkORM.tests.test_model.create_classmethod_test[source]

	Bases: rethinkORM.tests.test_model.base

Tests the create() classmethod of the model

Same as the new() classmethod test however we don’t have to explicitly
tell the model to save

	
model

	alias of gateModel

	
class rethinkORM.tests.test_model.find_classmethod_test[source]

	Bases: rethinkORM.tests.test_model.base

Tests the find() classmethod of the model

	
model

	alias of gateModel

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	RethinkORM 0.3.0 documentation

 	rethinkORM

rethinkORM.tests

To get started and make sure this all works, please make sure you have
Python nose [https://github.com/nose-devs/nose] installed.

nosetests rethinkORM -v -s

This will run the all the tests, not capturing stdout and being verbose, in
case anything goes wrong, or if you modify the tests. Please note, tests
are subject to a lot of changes, and this may not always be the same
command.

If you want to also check the
PEP8 [http://www.python.org/dev/peps/pep-0008/]
validity of the code, you can run:

pep8 rethinkORM

or, if you have tissue [https://pypi.python.org/pypi/tissue/0.3]
installed you can run a PEP8 check with the rest of the test suite like so:

nosetests rethinkORM -v -s --with-tissue

How the tests work (or should, if more are written):

There is a setup fixture that creates a database called model and
within that creates a table stargate. Then each test works on
entries which get stored in this database and table. When everything is
done, the teardown fixture is ran to clean up and delete the whole
database model. Each test should be broken down into basic actions,
for example there are currently tests for:

	inserting a new entry

	modifying that entry

	deleting that entry

	inserting an entry where the primary key is None or a null value.

test_model Module

Test suite for the model

	
class rethinkORM.tests.test_model.base[source]

	Bases: object

Base test object to help automate some of the repetitive work of reloading
a document to ensure the model matches the test data. Also takes care of
deleting the document if cleanupAfter is True

	
cleanupAfter = False

	Should the document created by this test be deleted when over?

	
loadCheck = True

	Should the document be reloaded and have all it’s data checked against?

	
whatToLoad = []

	If loadCheck is true, fill this out with strings of the data keys
to check the model against.

	
model = None

	The model being used for this test

	
data = None

	The data being used for this test. Please at least include an ID

	
action()[source]

	Override this with your own function to do whatever you want for the
test

	
load()[source]

	Override this to do a custom load check. This should find the key you
created or modified in action() and check it’s values to ensure
everything was set correctly. By default this loads the model with the
test objects data[“id”] and uses whatToLoad to run checks against
the data and the model.

	
cleanup()[source]

	Override this to set a custom cleanup process. By default this takes
the key that was generated in action() and calls the models
.delete() function.

	
class rethinkORM.tests.test_model.insert_test[source]

	Bases: rethinkORM.tests.test_model.base

Tests the basic ability to make a new model instance, and save it to the
Database

	
model

	alias of gateModel

	
action()[source]

	Creates a new object, and inserts it, using .save()

	
class rethinkORM.tests.test_model.modify_test[source]

	Bases: rethinkORM.tests.test_model.base

Tests the ability to load, modify and save a model correctly

	
model

	alias of gateModel

	
action()[source]

	Next, we get the object again, and this time,
we modify it, and save it.

	
rethinkORM.tests.test_model.insertBadId_test(*arg, **kw)[source]

	Here we test to make sure that if we give a primary key of type None
that we are raising an exception, if we don’t get an exception then
something is wrong since the primary key shouldn’t be allowed to be None

	
rethinkORM.tests.test_model.insertIdAndData_test(*arg, **kw)[source]

	Make sure that the model raises an Exception when a key and data are
provided

	
class rethinkORM.tests.test_model.new_classmethod_test[source]

	Bases: rethinkORM.tests.test_model.base

Tests the new() classmethod of the model

	
model

	alias of gateModel

	
class rethinkORM.tests.test_model.create_classmethod_test[source]

	Bases: rethinkORM.tests.test_model.base

Tests the create() classmethod of the model

Same as the new() classmethod test however we don’t have to explicitly
tell the model to save

	
model

	alias of gateModel

	
class rethinkORM.tests.test_model.find_classmethod_test[source]

	Bases: rethinkORM.tests.test_model.base

Tests the find() classmethod of the model

	
model

	alias of gateModel

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RethinkORM 0.3.0 documentation

rethinkORM

rethinkModel Module

	
class rethinkORM.rethinkModel.RethinkModel(id=False, **kwargs)[source]

	Emulates a python object for the data which is returned from rethinkdb and
the official Python client driver. Raw data from the database is stored in
_data to keep the objects namespace clean. For more information look at how
_get() and _set() function in order to keep the namespace cleaner but still
provide easy access to data.

This object has a __repr__ method which can be used with print or logging
statements. It will give the id and a representation of the internal _data
dict for debugging purposes.

	
table = ''

	The table which this document object will be stored in

	
primaryKey = 'id'

	The current primary key of the table

	
durability = 'soft'

	Can either be Hard or Soft, and is passed to RethinkDB

	
non_atomic = False

	Determins if the transaction can be non atomic or not

	
upsert = True

	Will either update, or create a new object if true and a primary key is
given.

	
__init__(id=False, **kwargs)[source]

	Initializes the main object, if id is in kwargs, then we assume
this is already in the database, and will try to pull its data, if not,
then we assume this is a new entry that will be inserted.

(Optional, only if not using .repl()) conn or connection can also
be passed, which will be used in all the .run() clauses.

	
finishInit()[source]

	A hook called at the end of the main __init__ to allow for
custom inherited classes to customize their init process without having
to redo all of the existing int.
This should accept nothing besides self and nothing should be
returned.

	
__delitem__(item)[source]

	Deletes the given item from the objects _data dict, or if from the
objects namespace, if it does not exist in _data.

	
__contains__(item)[source]

	Allows for the use of syntax similar to:

if "blah" in model:

This only works with the internal _data, and does not include other
properties in the objects namepsace.

	
classmethod new(**kwargs)[source]

	Creates a new instance, filling out the models data with the keyword
arguments passed, so long as those keywords are not in the protected
items array.

	
classmethod create(id=None, **kwargs)[source]

	Similar to new() however this calls save() on the object before
returning it.

	
classmethod find(id)[source]

	Loads an existing entry if one can be found, otherwise an exception is
raised.

	Parameters:	id (Str) – The id of the given entry

	Returns:	cls instance of the given id entry

	
save()[source]

	If an id exists in the database, we assume we’ll update it, and if not
then we’ll insert it. This could be a problem with creating your own
id’s on new objects, however luckily, we keep track of if this is a new
object through a private _new variable, and use that to determine if we
insert or update.

	
delete()[source]

	Deletes the current instance. This assumes that we know what we’re
doing, and have a primary key in our data already. If this is a new
instance, then we’ll let the user know with an Exception

	
__repr__()[source]

	Allows for the representation of the object, for debugging purposes

	
protectedItems[source]

	Provides a cleaner interface to dynamically add items to the models
list of protected functions to not store in the database

rethinkCollection Module

	
class rethinkORM.rethinkCollection.RethinkCollection(model, filter=None)[source]

	A way to fetch groupings of documents that meet a criteria and have them
in an iterable storage object, with each document represented by
RethinkModel objects

	
__init__(model, filter=None)[source]

	Instantiates a new collection, using the given models table, and
wrapping all documents with the given model.

Filter can be a dictionary or lambda, similar to the filters for the
RethinkDB drivers filters.

	
joinOn(model, onIndex)[source]

	Performs an eqJoin on with the given model. The resulting join will be
accessible through the models name.

	
joinOnAs(model, onIndex, whatAs)[source]

	Like joinOn but allows setting the joined results name to access it
from.

Performs an eqJoin on with the given model. The resulting join will be
accessible through the given name.

	
orderBy(field, direct='desc')[source]

	Allows for the results to be ordered by a specific field. If given,
direction can be set with passing an additional argument in the form
of “asc” or “desc”

	
fetch()[source]

	Fetches the query and then tries to wrap the data in the model, joining
as needed, if applicable.

Subpackages

	rethinkORM.tests
	How the tests work (or should, if more are written):

	test_model Module

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	RethinkORM 0.3.0 documentation

 	rethinkORM

rethinkORM.tests

To get started and make sure this all works, please make sure you have
Python nose [https://github.com/nose-devs/nose] installed.

nosetests rethinkORM -v -s

This will run the all the tests, not capturing stdout and being verbose, in
case anything goes wrong, or if you modify the tests. Please note, tests
are subject to a lot of changes, and this may not always be the same
command.

If you want to also check the
PEP8 [http://www.python.org/dev/peps/pep-0008/]
validity of the code, you can run:

pep8 rethinkORM

or, if you have tissue [https://pypi.python.org/pypi/tissue/0.3]
installed you can run a PEP8 check with the rest of the test suite like so:

nosetests rethinkORM -v -s --with-tissue

How the tests work (or should, if more are written):

There is a setup fixture that creates a database called model and
within that creates a table stargate. Then each test works on
entries which get stored in this database and table. When everything is
done, the teardown fixture is ran to clean up and delete the whole
database model. Each test should be broken down into basic actions,
for example there are currently tests for:

	inserting a new entry

	modifying that entry

	deleting that entry

	inserting an entry where the primary key is None or a null value.

test_model Module

Test suite for the model

	
class rethinkORM.tests.test_model.base[source]

	Bases: object

Base test object to help automate some of the repetitive work of reloading
a document to ensure the model matches the test data. Also takes care of
deleting the document if cleanupAfter is True

	
cleanupAfter = False

	Should the document created by this test be deleted when over?

	
loadCheck = True

	Should the document be reloaded and have all it’s data checked against?

	
whatToLoad = []

	If loadCheck is true, fill this out with strings of the data keys
to check the model against.

	
model = None

	The model being used for this test

	
data = None

	The data being used for this test. Please at least include an ID

	
action()[source]

	Override this with your own function to do whatever you want for the
test

	
load()[source]

	Override this to do a custom load check. This should find the key you
created or modified in action() and check it’s values to ensure
everything was set correctly. By default this loads the model with the
test objects data[“id”] and uses whatToLoad to run checks against
the data and the model.

	
cleanup()[source]

	Override this to set a custom cleanup process. By default this takes
the key that was generated in action() and calls the models
.delete() function.

	
class rethinkORM.tests.test_model.insert_test[source]

	Bases: rethinkORM.tests.test_model.base

Tests the basic ability to make a new model instance, and save it to the
Database

	
model

	alias of gateModel

	
action()[source]

	Creates a new object, and inserts it, using .save()

	
class rethinkORM.tests.test_model.modify_test[source]

	Bases: rethinkORM.tests.test_model.base

Tests the ability to load, modify and save a model correctly

	
model

	alias of gateModel

	
action()[source]

	Next, we get the object again, and this time,
we modify it, and save it.

	
rethinkORM.tests.test_model.insertBadId_test(*arg, **kw)[source]

	Here we test to make sure that if we give a primary key of type None
that we are raising an exception, if we don’t get an exception then
something is wrong since the primary key shouldn’t be allowed to be None

	
rethinkORM.tests.test_model.insertIdAndData_test(*arg, **kw)[source]

	Make sure that the model raises an Exception when a key and data are
provided

	
class rethinkORM.tests.test_model.new_classmethod_test[source]

	Bases: rethinkORM.tests.test_model.base

Tests the new() classmethod of the model

	
model

	alias of gateModel

	
class rethinkORM.tests.test_model.create_classmethod_test[source]

	Bases: rethinkORM.tests.test_model.base

Tests the create() classmethod of the model

Same as the new() classmethod test however we don’t have to explicitly
tell the model to save

	
model

	alias of gateModel

	
class rethinkORM.tests.test_model.find_classmethod_test[source]

	Bases: rethinkORM.tests.test_model.base

Tests the find() classmethod of the model

	
model

	alias of gateModel

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	RethinkORM 0.3.0 documentation

 Python Module Index

 r

 			

 		
 r	

 	[image: -]
 	
 rethinkORM	

 	
 	
 rethinkORM.tests.test_model	

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	RethinkORM 0.3.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | F
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	

 	__contains__() (rethinkORM.rethinkModel.RethinkModel method)

 	__delitem__() (rethinkORM.rethinkModel.RethinkModel method)

 	

 	__init__() (rethinkORM.rethinkCollection.RethinkCollection method)

 	

 	(rethinkORM.rethinkModel.RethinkModel method)

 	__repr__() (rethinkORM.rethinkModel.RethinkModel method)

A

 	

 	action() (rethinkORM.tests.test_model.base method)

 	

 	(rethinkORM.tests.test_model.insert_test method)

 	(rethinkORM.tests.test_model.modify_test method)

B

 	

 	base (class in rethinkORM.tests.test_model)

C

 	

 	cleanup() (rethinkORM.tests.test_model.base method)

 	cleanupAfter (rethinkORM.tests.test_model.base attribute)

 	

 	create() (rethinkORM.rethinkModel.RethinkModel class method)

 	create_classmethod_test (class in rethinkORM.tests.test_model)

D

 	

 	data (rethinkORM.tests.test_model.base attribute)

 	delete() (rethinkORM.rethinkModel.RethinkModel method)

 	

 	durability (rethinkORM.rethinkModel.RethinkModel attribute)

F

 	

 	fetch() (rethinkORM.rethinkCollection.RethinkCollection method)

 	find() (rethinkORM.rethinkModel.RethinkModel class method)

 	

 	find_classmethod_test (class in rethinkORM.tests.test_model)

 	finishInit() (rethinkORM.rethinkModel.RethinkModel method)

I

 	

 	insert_test (class in rethinkORM.tests.test_model)

 	insertBadId_test() (in module rethinkORM.tests.test_model)

 	

 	insertIdAndData_test() (in module rethinkORM.tests.test_model)

J

 	

 	joinOn() (rethinkORM.rethinkCollection.RethinkCollection method)

 	

 	joinOnAs() (rethinkORM.rethinkCollection.RethinkCollection method)

L

 	

 	load() (rethinkORM.tests.test_model.base method)

 	

 	loadCheck (rethinkORM.tests.test_model.base attribute)

M

 	

 	model (rethinkORM.tests.test_model.base attribute)

 	

 	(rethinkORM.tests.test_model.create_classmethod_test attribute)

 	(rethinkORM.tests.test_model.find_classmethod_test attribute)

 	(rethinkORM.tests.test_model.insert_test attribute)

 	(rethinkORM.tests.test_model.modify_test attribute)

 	(rethinkORM.tests.test_model.new_classmethod_test attribute)

 	

 	modify_test (class in rethinkORM.tests.test_model)

N

 	

 	new() (rethinkORM.rethinkModel.RethinkModel class method)

 	new_classmethod_test (class in rethinkORM.tests.test_model)

 	

 	non_atomic (rethinkORM.rethinkModel.RethinkModel attribute)

O

 	

 	orderBy() (rethinkORM.rethinkCollection.RethinkCollection method)

P

 	

 	primaryKey (rethinkORM.rethinkModel.RethinkModel attribute)

 	

 	protectedItems (rethinkORM.rethinkModel.RethinkModel attribute)

R

 	

 	RethinkCollection (class in rethinkORM.rethinkCollection)

 	RethinkModel (class in rethinkORM.rethinkModel)

 	

 	rethinkORM.tests.test_model (module)

S

 	

 	save() (rethinkORM.rethinkModel.RethinkModel method)

T

 	

 	table (rethinkORM.rethinkModel.RethinkModel attribute)

U

 	

 	upsert (rethinkORM.rethinkModel.RethinkModel attribute)

W

 	

 	whatToLoad (rethinkORM.tests.test_model.base attribute)

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 _static/plus.png

_modules/rethinkORM/rethinkCollection.html

 Navigation

 		
 index

 		
 modules |

 		RethinkORM 0.3.0 documentation »

 		Module code »

 Source code for rethinkORM.rethinkCollection

#!/usr/bin/env python
"""
Quick way to get groupings of RethinkModels objects matching the given criteria
"""
import rethinkdb as r

[docs]class RethinkCollection(object):
 """
 A way to fetch groupings of documents that meet a criteria and have them
 in an iterable storage object, with each document represented by
 `RethinkModel` objects
 """
 documents = []
 table = ""
 _model = None
 _query = None
 _filter = {}
 _join = None
 _joinedField = None

[docs] def __init__(self, model, filter=None):
 """
 Instantiates a new collection, using the given models table, and
 wrapping all documents with the given model.

 Filter can be a dictionary or lambda, similar to the filters for the
 RethinkDB drivers filters.
 """
 self._model = model
 self._query = r.table(self._model.table)

 if filter:
 self._filter = filter
 self._query = self._query.filter(self._filter)

[docs] def joinOn(self, model, onIndex):
 """
 Performs an eqJoin on with the given model. The resulting join will be
 accessible through the models name.
 """
 return self._joinOnAsPriv(model, onIndex, model.__name__)

[docs] def joinOnAs(self, model, onIndex, whatAs):
 """
 Like `joinOn` but allows setting the joined results name to access it
 from.

 Performs an eqJoin on with the given model. The resulting join will be
 accessible through the given name.
 """
 return self._joinOnAsPriv(model, onIndex, whatAs)

 def _joinOnAsPriv(self, model, onIndex, whatAs):
 """
 Private method for handling joins.
 """
 if self._join:
 raise Exception("Already joined with a table!")

 self._join = model
 self._joinedField = whatAs
 table = model.table
 self._query = self._query.eq_join(onIndex, r.table(table))
 return self

[docs] def orderBy(self, field, direct="desc"):
 """
 Allows for the results to be ordered by a specific field. If given,
 direction can be set with passing an additional argument in the form
 of "asc" or "desc"
 """
 if direct == "desc":
 self._query = self._query.order_by(r.desc(field))
 else:
 self._query = self._query.order_by(r.asc(field))

 return self

 def __iter__(self):
 for doc in self._documents:
 yield doc

 def offset(self, value):
 """
 Allows for skipping a specified number of results in query. Useful
 for pagination.
 """

 self._query = self._query.skip(value)

 return self

 def limit(self, value):
 """
 Allows for limiting number of results returned for query. Useful
 for pagination.
 """
 self._query = self._query.limit(value)

 return self

 # Pagination helpers...
 # These are questionable, on if I'll put them in or not.
 #def paginate(self, start,finish):
 #pass

 #@property
 #def currentPage(self):
 #pass

 #@property
 #def perpage(self):
 #pass

 #@property
 #def hasnextpage(self):
 #pass

 #@property
 #def pages(self):
 #pass
 # Okay, enough pagination

[docs] def fetch(self):
 """
 Fetches the query and then tries to wrap the data in the model, joining
 as needed, if applicable.
 """
 returnResults = []

 results = self._query.run()
 for result in results:
 if self._join:
 # Because we can tell the models to ignore certian fields,
 # through the protectedItems blacklist, we can nest models by
 # name and have each one act normal and not accidentally store
 # extra data from other models
 item = self._model.fromRawEntry(**result["left"])
 joined = self._join.fromRawEntry(**result["right"])
 item.protectedItems = self._joinedField
 item[self._joinedField] = joined

 else:
 item = self._model.fromRawEntry(**result)

 returnResults.append(item)

 self._documents = returnResults
 return self._documents

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

_modules/rethinkORM/tests/test_model.html

 Navigation

 		
 index

 		
 modules |

 		RethinkORM 0.3.0 documentation »

 		Module code »

 Source code for rethinkORM.tests.test_model

#!/usr/bin/env python
"""
Test suite for the model
"""
import nose.tools as nst
from rethinkORM.tests.fixtures import *

[docs]class base(object):
 """
 Base test object to help automate some of the repetitive work of reloading
 a document to ensure the model matches the test data. Also takes care of
 deleting the document if `cleanupAfter` is `True`
 """
 cleanupAfter = False
 """Should the document created by this test be deleted when over?"""
 loadCheck = True
 """
 Should the document be reloaded and have all it's data checked against?
 """
 whatToLoad = []
 """
 If loadCheck is true, fill this out with strings of the data keys
 to check the model against.
 """

 model = None
 """The model being used for this test"""
 data = None
 """The data being used for this test. Please at least include an ID"""

 def action_test(self):
 self.action()

 # prefixed with b_ to run this right after action because things run alpha
 # order it seems
 def b_load_test(self):
 if self.loadCheck:
 self.load()

 def cleanup_test(self):
 if self.cleanupAfter:
 self.cleanup()

[docs] def action(self):
 """
 Override this with your own function to do whatever you want for the
 test
 """
 pass

[docs] def load(self):
 """
 Override this to do a custom load check. This should find the key you
 created or modified in `action()` and check it's values to ensure
 everything was set correctly. By default this loads the model with the
 test objects `data["id"]` and uses `whatToLoad` to run checks against
 the data and the model.
 """
 item = self.model(self.data["id"])
 assert item.id == self.data["id"]
 for bit in self.whatToLoad:
 assert getattr(item, bit) == self.data[bit]
 del item

[docs] def cleanup(self):
 """
 Override this to set a custom cleanup process. By default this takes
 the key that was generated in `action()` and calls the models
 `.delete()` function.
 """
 item = self.model(self.data["id"])
 item.delete()
 del item

[docs]class insert_test(base):
 """
 Tests the basic ability to make a new model instance, and save it to the
 Database
 """
 whatToLoad = ["what", "description", "planet"]
 data = {"what": "DHD",
 "description": "Dial Home Device",
 "planet": baseData["planet"],
 "id": baseData["id"]}
 model = gateModel

 cleanupAfter = True

[docs] def action(self):
 """
 Creates a new object, and inserts it, using `.save()`
 """
 dhdProp = gateModel(what=self.data["what"],
 description=self.data["description"],
 planet=self.data["planet"])
 dhdProp.id = self.data["id"]
 assert dhdProp.save()
 del dhdProp

[docs]class modify_test(base):
 """Tests the ability to load, modify and save a model correctly"""
 whatToLoad = ["what", "description", "planet", "episodes"]
 data = baseData
 model = gateModel

 cleanupAfter = True

[docs] def action(self):
 """
 Next, we get the object again, and this time,
 we modify it, and save it.
 """
 gateModel.create(**{"what": "DHD",
 "description": "Dial Home Device",
 "planet": baseData["planet"],
 "id": self.data["id"]})

 dhdProp = gateModel(self.data["id"])
 dhdProp.what = self.data["what"]
 dhdProp.description = self.data["description"]
 dhdProp.episodes = self.data["episodes"]
 assert dhdProp.save()
 del dhdProp

 @nst.raises(Exception)
 def d_load_delete_test(self):
 """
 And make sure that if we try to get that object after it's been
 deleted, that we get a new object rather than the existing
 one we deleted.
 """
 dhdProp = self.model(self.data["id"])

@nst.raises(Exception)
[docs]def insertBadId_test():
 """
 Here we test to make sure that if we give a primary key of type `None`
 that we are raising an exception, if we don't get an exception then
 something is wrong since the primary key shouldn't be allowed to be `None`
 """
 oldProp = gateModel(id=None, what="Something?")
 assert oldProp.save()
 del oldProp

@nst.raises(Exception)
[docs]def insertIdAndData_test():
 """
 Make sure that the model raises an Exception when a key and data are
 provided
 """
 prop = gateModel(id="3", what="duh")

"""
Now onto the classmethods and helper functions to ensure things are good to go
"""

[docs]class new_classmethod_test(base):
 """
 Tests the new() classmethod of the model
 """
 model = gateModel
 data = classmethodData
 whatToCheck = ["what", "description"]

 cleanupAfter = True

 def action(self):
 prop = gateModel.new(what=self.data["what"],
 description=self.data["description"])
 prop.id = self.data["id"]
 assert prop.what == self.data["what"]
 assert prop.description == self.data["description"]
 assert prop.id == self.data["id"]
 assert prop.save()

[docs]class create_classmethod_test(base):
 """
 Tests the create() classmethod of the model

 Same as the new() classmethod test however we don't have to explicitly
 tell the model to save
 """
 model = gateModel
 data = classmethodData
 whatToCheck = ["what", "description"]
 cleanupAfter = True

 def action(self):
 prop = gateModel.create(what=self.data["what"],
 description=self.data["description"],
 id=self.data["id"])
 assert prop.what == self.data["what"]
 assert prop.description == self.data["description"]
 assert prop.id == self.data["id"]

[docs]class find_classmethod_test(base):
 """
 Tests the find() classmethod of the model
 """
 model = gateModel
 data = classmethodData
 whatToCheck = ["what", "description"]
 loadCheck = False
 cleanupAfter = True

 def action(self):
 oldProp = gateModel(what=self.data["what"],
 description=self.data["description"])
 oldProp.id = self.data["id"]
 oldProp.save()

 prop = gateModel.find(self.data["id"])
 assert prop.what == self.data["what"]
 assert prop.description == self.data["description"]
 assert prop.id == self.data["id"]

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_static/comment.png

_static/up.png

_static/down.png

_static/file.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		RethinkORM 0.3.0 documentation »

 All modules for which code is available

		rethinkORM.rethinkCollection

		rethinkORM.rethinkModel

		rethinkORM.tests.test_model

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

_modules/rethinkORM/rethinkModel.html

 Navigation

 		
 index

 		
 modules |

 		RethinkORM 0.3.0 documentation »

 		Module code »

 Source code for rethinkORM.rethinkModel

#!/usr/bin/env python
"""
ORM style interface for working with RethinkDB and having a native wrapper and
some helper functions for working with the wrapper. This module contains
the base model which should be inherited.
"""
import rethinkdb as r

[docs]class RethinkModel(object):
 """
 Emulates a python object for the data which is returned from rethinkdb and
 the official Python client driver. Raw data from the database is stored in
 _data to keep the objects namespace clean. For more information look at how
 _get() and _set() function in order to keep the namespace cleaner but still
 provide easy access to data.

 This object has a __repr__ method which can be used with print or logging
 statements. It will give the id and a representation of the internal _data
 dict for debugging purposes.
 """
 _protectedItems = []
 _conn = None
 _join = None
 _joinedField = ""

 table = "" #: The table which this document object will be stored in
 primaryKey = "id" #: The current primary key of the table

 durability = "soft"
 """Can either be Hard or Soft, and is passed to RethinkDB"""

 non_atomic = False
 """Determins if the transaction can be non atomic or not"""

 upsert = True
 """Will either update, or create a new object if true and a primary key is
 given."""

[docs] def __init__(self, id=False, **kwargs):
 """
 Initializes the main object, if `id` is in kwargs, then we assume
 this is already in the database, and will try to pull its data, if not,
 then we assume this is a new entry that will be inserted.

 (Optional, only if not using .repl()) `conn` or `connection` can also
 be passed, which will be used in all the .run() clauses.
 """

 protectedItems = dir(self)
 protectedItems.append(self._protectedItems)
 self._protectedItems = protectedItems
 """
 List of strings to not store in the database; automatically set to
 the built in properties of this object to prevent any accidental stuff
 """

 # Is this a new object, or already in the database? (set later)
 self._new = True
 self._data = {} # STORE ALL THE DATA!!

 # If we're given a connection, we'll use it, if not, we'll assume
 # .repl() was called on r.connect()
 self._conn = kwargs.pop("conn", kwargs.pop("connection", None))

 key = kwargs.get(self.primaryKey, id)

 if key is None or key == "" and len(kwargs) == 0:
 raise Exception("""Cannot have an empty or type None key""")

 elif key and len(kwargs) > 0:
 # Assume we have data from a collection, just go with it and set
 # our data.
 #self._makeNew(kwargs)
 raise Exception("""Cannot supply primary key and additional \
arguments while searching for Documents.""")

 if key and not self._grabData(key):
 raise Exception("""Could not find key in database""")

 self._makeNew(kwargs)
 if key:
 self._data[self.primaryKey] = key

 # Hook to run any inherited class code, if needed
 self.finishInit()

 def _makeNew(self, kwargs):
 # We assume this is a new object, and that we'll insert it
 for key in kwargs:
 if key not in object.__getattribute__(self, "_protectedItems") \
 or key[0] != "_":
 self._data[key] = kwargs[key]

 def _grabData(self, key):
 """
 Tries to find the existing document in the database, if it is found,
 then the objects _data is set to that document, and this returns
 `True`, otherwise this will return `False`

 :param key: The primary key of the object we're looking for
 :type key: Str

 :return: True if a document was found, otherwise False
 :rtype: Boolean
 """
 rawCursor = r.table(self.table).get(key).run(self._conn)
 if rawCursor:
 self._data = rawCursor
 self._new = False
 return True
 else:
 return False

[docs] def finishInit(self):
 """
 A hook called at the end of the main `__init__` to allow for
 custom inherited classes to customize their init process without having
 to redo all of the existing int.
 This should accept nothing besides `self` and nothing should be
 returned.
 """
 pass

 def _get(self, item):
 """
 Helper function to keep the __getattr__ and __getitem__ calls
 KISSish
 """
 if item not in object.__getattribute__(self, "_protectedItems") \
 and item[0] != "_":
 data = object.__getattribute__(self, "_data")
 if item in data:
 return data[item]
 return object.__getattribute__(self, item)

 def _set(self, item, value):
 """
 Helper function to keep the __setattr__ and __setitem__ calls
 KISSish

 Will only set the objects _data if the given items name is not prefixed
 with _ or if the item exists in the protected items List.
 """
 if item not in object.__getattribute__(self, "_protectedItems") \
 and item[0] != "_":
 keys = object.__getattribute__(self, "_data")
 if not hasattr(value, '__call__'):
 keys[item] = value
 return value
 if hasattr(value, '__call__') and item in keys:
 raise Exception("""Cannot set model data to a function, same \
name exists in data""")
 return object.__setattr__(self, item, value)

 def __getattr__(self, item):
 return self._get(item)

 def __getitem__(self, item):
 return self._get(item)

 def __setattr__(self, item, value):
 return self._set(item, value)

 def __setitem__(self, item, value):
 return self._set(item, value)

[docs] def __delitem__(self, item):
 """
 Deletes the given item from the objects _data dict, or if from the
 objects namespace, if it does not exist in _data.
 """
 keys = object.__getattribute__(self, "_data")
 if item in keys:
 del(keys[item])
 else:
 object.__delitem__(self, item)

[docs] def __contains__(self, item):
 """
 Allows for the use of syntax similar to::

 if "blah" in model:

 This only works with the internal _data, and does not include other
 properties in the objects namepsace.
 """
 keys = object.__getattribute__(self, "_data")
 if item in keys:
 return True
 return False

 @classmethod
 def fromRawEntry(cls, **kwargs):
 """
 Helper function to allow wrapping existing data/entries, such as
 those returned by collections.
 """
 id = kwargs["id"]

 kwargs.pop("id")

 what = cls(**kwargs)
 what._new = False
 what.id = id

 return what

 @classmethod
[docs] def new(cls, **kwargs):
 """
 Creates a new instance, filling out the models data with the keyword
 arguments passed, so long as those keywords are not in the protected
 items array.
 """
 return cls(**kwargs)

 @classmethod
[docs] def create(cls, id=None, **kwargs):
 """
 Similar to new() however this calls save() on the object before
 returning it.
 """
 what = cls(**kwargs)
 if id:
 setattr(what, cls.primaryKey, id)
 what.save()
 return what

 @classmethod
[docs] def find(cls, id):
 """
 Loads an existing entry if one can be found, otherwise an exception is
 raised.

 :param id: The id of the given entry
 :type id: Str

 :return: `cls` instance of the given `id` entry
 """
 return cls(id)

[docs] def save(self):
 """
 If an id exists in the database, we assume we'll update it, and if not
 then we'll insert it. This could be a problem with creating your own
 id's on new objects, however luckily, we keep track of if this is a new
 object through a private _new variable, and use that to determine if we
 insert or update.
 """
 if not self._new:
 data = self._data.copy()
 ID = data.pop(self.primaryKey)
 reply = r.table(self.table).get(ID) \
 .update(data,
 durability=self.durability,
 non_atomic=self.non_atomic) \
 .run(self._conn)

 else:
 reply = r.table(self.table) \
 .insert(self._data,
 durability=self.durability,
 upsert=self.upsert) \
 .run(self._conn)
 self._new = False

 if "generated_keys" in reply and reply["generated_keys"]:
 self._data[self.primaryKey] = reply["generated_keys"][0]

 if "errors" in reply and reply["errors"] > 0:
 raise Exception("Could not insert entry: %s"
 % reply["first_error"])

 return True

[docs] def delete(self):
 """
 Deletes the current instance. This assumes that we know what we're
 doing, and have a primary key in our data already. If this is a new
 instance, then we'll let the user know with an Exception
 """
 if self._new:
 raise Exception("This is a new object, %s not in data, \
indicating this entry isn't stored." % self.primaryKey)

 r.table(self.table).get(self._data[self.primaryKey]) \
 .delete(durability=self.durability).run(self._conn)
 return True

[docs] def __repr__(self):
 """
 Allows for the representation of the object, for debugging purposes
 """
 return "< %s at %s with data: %s >" % (self.__class__.__name__,
 id(self),
 self._data)

 @property
 def protectedItems(self):
 """
 Provides a cleaner interface to dynamically add items to the models
 list of protected functions to not store in the database
 """
 return self._protectedItems

 @protectedItems.setter
[docs] def protectedItems(self, value):
 if type(value) is list:
 self._protectedItems.extend(value)
 else:
 assert type(value) is str
 self._protectedItems.append(value)
 return self._protectedItems

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		RethinkORM 0.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/minus.png

